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A New Paradigm for Learning Affective Behaviors:

Emotional Affordances in Human Robot Interaction
F. Cid, A. J. Palomino and P. Núñez

Abstract—In the last decade, affordances have been success-
fully used in robotics for learning by imitation. From robotics
perspective, affordances have been powerfull since represent
relationships between objects, effects and opportunities of ob-
server’s actions. In Human Robot Interaction, emotions play an
important role when the communication participants try to show
their intentions. The proposed paper introduces the concept of
affective affordances as an extension of the classical perceptual
affordances, where now represent the relation between affective
elements, such as the objects and the emotional states, effects and
oportunities for the robot’s reactions. Affective affordances are
also related to intentions and are presented here as part of an
more complex affective behaviors learning. The major purpose
of this paper is to communicate the proposed conceptual idea
to the robotics community working in affective Human-Robot
Interaction.

Index Terms—Affordances, Human-Robot-Interaction, Learn-
ing, Social Robots.

I. INTRODUCTION

Probably, in a near future robots will help humans in their

daily life. In this context, in that robots work in cooperation

with people in real scenarios like offices or homes, it is

essential that these robots have social skills. Social robots

follow behaviors similar to humans: they interact and com-

municate with humans by following a set of social rules,

e.g., by using means of communication also used in human-

human interaction (such as speech, facial expressiveness or

body language). How these robots autonomously learn these

social behaviors is an interesting working area and source of

different research lines in the last decades. And how this social

behaviors configure an affective Human Robot Interaction

(HRI) is the final goal of the ongoing work presented in this

paper.

Some classical psychological theories, such as Piaget’s the-

ory [1], describe different stages in the development of human

behaviors. In the beginning, Piaget suggests that newborns

have no cognitive structures. Instead they have reex structures

for sucking, grasping, and crying (e.g., to close their hands

when their palms are touched). Social behaviors appear during

the second or third month of life and most of them are learned

by imitation.

Related to this theory, the ecological psicologist Gibson

defines the concept of Affordances [2] as ”the affordances of

the environment are what it offers the animal, what it provides

or furnishes, either for good or ill”, that is action opportunities

available at an environment or at an object to an observer,
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Fig. 1. Emotional affordances: a relationship between stimulus
(affective elements), observer’s reactions and effects.

thus depending on its action skills. This ecological theory has

been used in learning research in the last decades. In robotics,

for instance, affordances are powerfull since: a) robots must

be able to deal with unknown objects; and b) humans need

ways of instructing robots. The classical use of affordances

for action learning by imitation was based on interacting with

physical objects characterized by their color, size or shape and

analyzing the final effect [3].

In this paper, an extension to the concept of these perceptual

affordances is proposed for learning affective behaviors. In a

similar way that affordances define connection between objects

and opportunities for actions, the emotional affordances in

robotics extend this concept by including the relationship

between affective elements (stimulus), effects and possibilites

for observer’s reactions (see Fig. 1). In the context of affective

HRI, affective elements are related to not only physical char-

acteristics of the objects, but also the environment or the own

emotional state of the communication participants. Similar to

perceptual affordances, emotional affordances can be used to

predict outcome of an emotional reaction, to plan a reaction

to achieve a specific goal or to select affective elements to

produce an effect.

The approach presented in this work is part of a more com-

plex cognitive robotic architecture for affective HRI, which

is also outlined in this paper. Although there is not yet

experimental results, the conceptual result of ongoing work,

in conjunction with a detailed description of the basic skills of

the robot are addressed. In order to proof this new paradigm

for learning affective behaviors, the existing formalization for

modelling affordances is used [4].

This paper is organized as follows: after discussing previous
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works in the literature related to cognitive architectures and

perceptual affordances for learning by imitation, in Section

II, Section III presents the concept of emotional affordances.

An overview of the proposed learning algorithm for affective

behaviors is presented in Section IV, where the affective

HRI scenario used for the learning is also described. Finally,

Section V summarizes the conclusions and future works of the

approach.

II. RELATED WORKS

As defined by Gibson three decades ago [2], affordances

are agent-dependent object usages. Since the formulation of

this idea, many robotics research groups have done a great

effort in investigating what is the best model for affordances

and how affordances can be learned by robots. Modelling

these perceptual affordances by learning has been studied in

different works. In [5], the authors propose to learn affordances

using a self-organizing maps (SOM). Other approaches were

proposed in [6], where authors describe a general model based

on Bayesian networks coupling actions, effects and objects

features. This formulation is also used in other interesting

works, such as [7] or [8], where the authors extend affordances

by taking the environmental context. Also in Morie et al.’s

work [9] the perceptual affordances were extended including

affective elements. However, these emotional affordances were

used in the creation of more emotionally affective Virtual

Enviroments.

Development of Cognitive architectures has been studied for

many researchers in the last decades. These general cognitive

systems should consider both, sensory motor and learning

aspects. An interesting review of cognitive architectures is

found in [10]. Particularly, Scheutz et al.[12] presented an

architecture for complex affective HRI, where the affect plays

an important role in the integration of the subsystems. More

recently, the two major aspects that should be simultaneously

present in affective cognitive architectures was presented in

[11]: intentions and emotions. This recommendation has been

used for the development of the emotional cognitive architec-

ture for affective HRI addressed in this paper, where affective

affordances are the basis of the architecture.

III. EMOTIONAL AFFORDANCES MODELLING

The proposed algorithm for affective behaviour learning is

built on Gibsons affordances, by expanding this concept to

include the relationship between affective elements, effects and

possibilites for observer’s reactions. For instance, if someone

gives to a person a bunch of flowers and does it with a

kind smile, this person not only knows that can grasp it

(perceptual affordances), but also, his logical reaction is a

possitive emotional state. In this paper, affordances can be

viewed as a continuum to illustrate the complementary and

overlapping domains of perception and emotion [9] (see Fig.

2).

In order to model the affective affordances, the formaliza-

tion from [3] has been adopted which is based on using a

Bayesian Network. First, the robot is assumed to be endowed

with a set of basic skills for perceiving both, the world

Fig. 2. Continuum of affordances from perceptual to emotional. On the
left, different objects (size, color and shape) infer different plans and actions
(perceptual affordances). On the right, these same objects and the emotional
state of the communication participants also infer a reaction in the robot.

surrounding and the human emotional state. Details on the

implementation of these basic skills are given in Section IV.

Let the discrete random variable R = {ri} represent the

execution of a robot reaction. Affective elements (objects

properties and the human emotional state) and effects during

the HRI are also modeled using discrete random variables.

Let Faff be the human emotional state estimate according

to a multimodal emotion recognition system (e.g., facial

expressiveness, speech or body gestures). Besides, let Fo

= {Fo(1), ..., Fo(no)} be object features extracted for ob-

ject (e.g., color, size, simetry, or shape). Finally, let E =

{E(1), ..., E(ne)} represent the effects detected by the robot

in the human emotional state after executing a reaction. The

set of nodes G is formed by the discrete variables A, Faff ,

Fo and E, Z = (A,Fe, Faff , Fo, E).
The graphical model of this Bayesian Network B = (G,∆)

over a set of variables Z = {Z1, ..., Zn} is illustrated in Fig. 3.

In this representation, the nodes of the graph G represent the

random variables Z and the arcs are associated to conditional

independence assumptions. In an affective HRI, the effect

in the human emotional state, which is evaluated by the

robot assuming a multimodal emotion recognition system, is

dependent of the properties of the affective elements and also

of the robot’s reaction. Let ∆ = {δi} define the conditional

probability distribution p(Zi|ZPa(Xi), δi) of each node in G.

Thus, similar to [3], affective affordances are represented

by the arrows between nodes and the parameters (casuality

property). As this Bayesian Networks encodes the relationship

between reactions, affective elements and effects, it is easy to

compute the distribution of a variable or a group of variables

given the values of the others (ı.e. to plan a robot’s reaction

given an intention, or to estimate an effect after a reaction).

IV. LEARNING AFFECTIVE BEHAVIOR BY IMITATION: A

NEW PERSPETIVE

In order to develop cognitive architectures to be capable

of generating affective behaviors similar to humans, it is

important to consider the role of these emotional affordance.

How these emotional affordances can be learned by robots is

the essential of this work. The proposal is based on the work

of [4], and assumes that the robot has learned a suitable set
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Fig. 3. Bayesian network model to represent the affective affordances. See
the text for more details.

TABLE I
LEARNING STAGES OF THE ONGOING APPROACH

Basic skills 1: learn basic affective skills
2: Develop an active visual perception system
for extracting phisical properties of objects

Affective 3: Perception of effects and categorization
HRI scenario 4: Learn affective affordances

5: Prediction and planning affective skills

Imitation 6: Perform imitation tasks

of elementary actions and reactions to explore the world and

estimate the human emotional state. In Table I, a description

of the learning stages is illustrated.

Next, following subsections explain with details three main

parts of the learning algorithm proposed in this paper.

A. Basic skills for an affective interaction

1) The Attention Model: In this subsection, an object-based

model of visual attention for a social robot which works in

a dynamic scenario [13] is proposed as a basic perception

skill. In the last years, computer vision researchers have been

trying to take advantage of biological visual systems, which

are able to filter out the irrelevant information in the scene

to focus all its resources in processing only relevant parts.

The psychological basis to develop artificial visual attention

systems are mainly two complementary theories: Treisman’s

Feature Integration Theory [14] and Wolfe’s Guided Search

[15]. The first one suggests that the human vision system

detects separable features in parallel in an early step of the

attention process (the pre-attentive stage, which is totally task-

independent) to finally integrate them thorough a bottom-up

process into a single saliency map. Several years later, Wolfe

proposed that a top-down component in attention can increase

the speed of the process giving more relevance to those parts

of the image corresponding to the current task. Furthermore,

attention theories introduce another important concept: the

Inhibition of Return. This mechanism implies that an already

attended object should not be selected again until some time

later. Otherwise, the most relevant object would be always

selected.

The used attention system integrates task-independent

bottom-up processing and task-dependent top-down selection.

In this model, the units of attention are the so-called proto-

objects [16], that are defined as units of visual information

that can be bound into a coherent and stable object. On one

hand, the bottom-up component determines the set of proto-

objects present in the image, describing them by a set of

low-level features that are considered relevant to determine

their corresponding saliency values. On the other hand, the

top-down component weights the low-level features that char-

acterize each proto-object to obtain a single saliency value

depending on the task to perform.

An overview of the system is shown in fig. 4. In the pre-

attentive stage, the different proto-objects present in the image

are extracted, using a perceptual segmentation algorithm based

on a hierarchical framework [17]. Then, the relevance of each

proto-object is computed taking into account different low-

level features. The features involved in saliency computation

are: colour contrast, intensity contrast, proximity, orientation

contrast, roundness, symmetry, similarity with red colour, sim-

ilarity with blue colour, similarity with green colour, similarity

with yellow colour and similarity with skin colour. These

features are weighted by a set of perception parameters (λi)

stored in a Perception-Modulation Memory (PMM). Depend-

ing on the value of these parameters, the system is able to

modify the influence of each low-level feature in the global

saliency computation. As a result of this stage, a set of proto-

objects ordered by their saliency is obtained.

The next stage, the semi-attentive stage, deals with the

management of the Working Memory (WM) and the Inhibition

of Return (IOR). The WM establishes the maximum number

of attended elements that can be maintained at once. It is

a short-term memory where the system stores the recently

attended objects and it has a reduced capacity, up to 5 elements

[18]. Each proto-object in WM is characterized by a set of

descriptors: its saliency value, its position in the image, the

different low-level features values and a time-to-live value

which establishes the maximum time that the proto-object can

stay in WM. A proto-object’s saliency also depends on this

last parameter, so the longer an element is kept in WM, the

lower its saliency will be. A new proto-object get into the

WM if and only if it has bigger saliency than the currently

stored elements. If the memory is full, the less salient element

is dropped out. Regarding the IOR, a tracker module keeps

permanently updated the position of each element in WM.

Thereby, it is avoided to attend an already selected proto-

object.

Both WM and PMM are the interface between early

attention stages and the rest of the system, including the

deliberative level. This interface includes a categorizer which

is able to classify the perceived proto-objects into categories

corresponding to high-level predicates. Besides, the PMM has

been modified to translate high-level instructions into a new

set of perception parameters λi, so it is allowed to change

the way the vision system perceives the world in terms of a

high-level decision. Fig. 5 illustrates the image processing of

the attentional perception system.
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Fig. 4. Overview of the Object-Based Attention Model.

Fig. 5. The attention model described in this work as basic skill.

2) Multimodal Emotion recognition system: The multi-

modal emotion recognition system is presented in this sub-

section. The framework consists of three subsystems running

in parallel that estimate the human emotional state using three

independent Dynamic Bayesian Networks (DBN). Each sub-

system deals with an information channel or mode associated

to the facial expressiveness, the speech and the body language.

First, the facial expression recognition subsystem is based on

a modified version of the authors’ previous work [20]. In this

proposal, the robot acquires the information using a RGB-

D camera and extracts the Action Units1 from a Candide-

3 reconstruction model. The same RGB-D sensor is used to

estimate a human emotional state, extracting invariant features

from the body analysis. In the third subsystem, users speech

in the conversation is analyzed in order to extract a set of

independent descriptors too.

In Fig. 6, an overview of the Multimodal emotion recogni-

tion system is illustrated. Four different emotions as well as

non-emotional state are detected using this Bayesian approach

(happiness, sadness, anger, fear and neutral). Finally, the

proposed system integrates the information associated with

all methods in a fourth DBN, which estimates the final user

emotion (fusion engine). Each subsystem is briefly described

below.

• Emotion recognition system from facial expressiveness:

The proposed methodology consists of a robust

feature extraction algorithm, which uses the Candide-3

1Similar to the most of facial expression recognition system, the proposed
work use the Facial Action Coding System (FACS) proposed by Ekman et al.
[19]

Fig. 6. Overview of the Multimodal emotion recognition system.

TABLE II
FACIAL EXPRESSIVENESS VECTOR df

EB Eye-Brows {AU1, AU4, none}
Ch Cheeks {AU6, none}
LE Lower Eyelids {AU7, none}
LC Lips Corners {AU12, AU15, none}
CB Chin Boss {AU17, none}
MF Mouth’s Form {AU20, AU23, none}
MA Mouth’s Aperture {AU24, AU25, none}

reconstruction model described in [21]. These facial

features extracted from the face mask are a combination

of independent and antagonistic distortions of the face

and constitute the input of a Dynamic Bayesian Network

(DBN) used as classifier [20]. The facial expressiveness

descriptor df = {EB,Ch, LE,LC,CB,MF,MA}
is a vector containing a set of normalized distances

calculated using Actions Units values as is described in

Table II. In Fig. 7b, the candide-3 face model is drawn

over the human face. Extracted features are shown in

Fig. 7c. Finally, three consecutive time intervals of the

DBN are shown in Fig. 7d.

• Emotion recognition system from body gestures: The

Body language plays an important role in affective state

recognition. Body gestures are analyzed according to

a set of invariant features, which are extracted from

the human skeleton. Table III illustrates the methods

used for extracting the body gestures features vector

dg =
{

QoM lh, QoMrh, V el, Acc, ci
}

, where QoM lh

QoMrh represent the Quantity of Motion for the left

and right hands, respectively. V el, Acc and ci describe

the velocity, acceleration and the contraction index2 of

the human body. Finally, dg is used as the input vector

in a DBN classifier. Fig. 8a shows the 3D positions of

hands and head during a human motion (N frames) in

an emotional state of happiness (Fig. 8b), xlh, xrh and

xh, respectively. These 3D positions are the basis of the

description vector defined in Table III.

• Emotion recognition system from speech: The last sub-

2Ci is a value for the contraction degree of the body, based on the
relationship of the chest and the hands position. This relationship has been
carried out by the area of the triangle defined by the three points, u, v and
w, and the perimeter s.
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Fig. 7. a) RGB Image acquired by the sensor; b) Candide-3 recontruction
model; c) Features extracted from the face mask; and d) Dynamic Bayesian
Network, three time intervals are shown.

TABLE III
BODY GESTURES FEATURES VECTOR dg

QoM lh Quantity of Motion QoM lh
i

= 1

N
·

N
∑

k=0

xlh
i − xlh

i−1

V el Velocity V eli =
1

N
·

N−1
∑

k=0

(xlh
k

− xlh
k−1

)

N

Acc Acceleration Acci =
V eli−V eli−1

t

Ci Contraction index Ci =
√

s · (s− u) · (s− v) · (s− w)

system uses a similar structure to the methods afore-

mentioned. Pitch, Energy and Speech-rate has been used

for emotion recognition from speech. First, the audio

signal x[n] is pre-processed on-line in order to detect

the presence or absence of speech (see Fig. 9a). Then,

a speech features vector ds= {Pt,En, Sr} is calculated

as shown in Table IV, considering N samples. This

descriptor is also the input of the third DBN classifier, as

is illustrated in Fig. 9b.

TABLE IV
SPEECH FEATURES VECTOR ds

Pt Pitch max
{

Y (ω) =
∏i=R

r=1
|X(ωr)|2

}

En Energy E = 1

N
·
∑x=i

x=0
x[i]2

• Fusion Engine: Through the use of a multimodal system,

it is possible to eliminate errors in the detection, by

checking the results with those obtained through another

modality. Thus, the decisions of each emotion recognition

subsytem are combined in a fused decision vector that is

analysed by the Bayesian network of three levels (see Fig.

10). The Time Manager in Fig. 6 synchronizes directly

the output of all the classifiers.

B. Affective Human Robot Interaction Scenario

In this section, the scenario used for the affective behaviors

learning is described. This scenario consists of a basic HRI,

Fig. 8. a) In a emotional state of happiness, the 3D positions for the left
hand, head and right hand are drawn in blue, red and green, respectively; and
b) Given the human skeleton, a set of invariant features are extracted.

Fig. 9. a) The audio signal is processed in order to detect the beginning and
ending of the sentences, and then, a set of features are extracted (e.g., pitch);
and b) Two time intervals for the Dynamic Bayesian Network classifier.

in which a person interacts with the robot (or with other

person). During this interaction, the robot builds the structure

of the Bayesian Network, G, using Markov Chain Monte Carlo

(MCMC) [4] and the parameter of each node in the graph.

To do that, several experiments are conducted to illustrate

the capability of the system to discover affective affordances

associated with reactions applied to affective elements (objects

and emotional states).

The proposed interaction consists of presenting a set of

objects, with different colors, shapes and sizes. Besides, the

human expresses different emotional states. The main intention

is to generate a transition between two emotional states (e.g.,

from sadness to happiness). In a first stage of the learning

process, the person’s reactions are analyzed by the robot as an

observer. After, the own robot is part of the learning process,

repeating the experiments. The main elements included in this

HRI scenario are detailed below:

• Robot Loki: Loki is an autonomous mobile manipulator

endowed with two arms (Each arm has 7 degrees-of-

freedom (DOF)) and a expressive head named Muecas3

(13 DOF), designed for researching in social robotics and

HRI. It has learned basic skills for perceiving the world

3www.iadex.es
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Fig. 10. The last DBN classifier combines the decision of each modality.

Fig. 11. The Loki robot, an AMM built as a collaboration among several
Spanish universities and companies, following design and coordination by
RoboLab.

and recognizing human emotions (see Fig. 11a).

• Objects: A set of different objects are present in the

scenarios. The objects have different shapes, color and

sizes. All of them can be grasped by Loki as is illustrated

in Fig. 11b.

• Emotional States: Four different emotional states (i.e.,

happiness, fear, anger and sadness) in conjunction with

the neutral state are used as affective elements. Besides,

these same emotional states are estimate with the mul-

timodal emotion recognition system described in this

paper.

V. DISCUSSION

This paper has described the ongoing work of autonomous

learning of affective behaviors. In order to socially interact

with human, the robot should be able not only to understand

users behaviours and intentions, but also to generate its own

emotional state. Thus, affective affordances have been defined

here as an extension of perceptual affordances. Affective

affordances represent the relation between affective elements,

effects and oportunities for robot’s reactions. In this work,

the basic concept has been explained, and also has been

posed the idea of using the affective affordances for learning

affective behaviors. In addition, the main stages of an affective

affordances learning have been summarized.

In the proposal, the affective Human-Robot Interaction

scenario for affective affordances learning has been described,

as well as the basic skills that the Robot Loki has learned.

Both basic skills, active perception and human emotional state

recognition, play an important role in the design of learning

strategies.

Future works will be focused on implementing the full

learning algorithm. It will spend a considerable time studying,

for example, the structure of the Bayesian Networks or choos-

ing a representative set of objects and emotions. However,

the presented idea of affective affordances is, without doubts,

beneficial for other researchers in the robotic community

working in affective HRI.
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